Led by Mark Ku at the University of Delaware, this work characterizes a high-quality diamond micro-chip from the Qnami Quantum Foundry for advanced, high-resolution NV-based quantum microscopy.
Swastik Kar’s group at Northeastern University used AC magnetometry on the Qnami ProteusQ to show that a permalloy nanowire can be used to concentrate RF fields into sub 300nm regions.
In a recent study on conducting ferroelectric domain walls, researchers used scanning NV magnetometry to directly visualize current flow at the nanoscale. These measurements were performed using the Qnami ProteusQ. The results challenge previous assumptions about current distribution and pave the way for more accurate modeling of next-generation memristive devices.
Researchers led by Ramamoorthy Ramesh used the Qnami ProteusQ™ quantum microscope to uncover how complex labyrinthine spin cycloids and their topological defects emerge in noncollinear antiferromagnets.
Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.
Using Qnami Foundry-fabricated diamond with NV nanopillars, researchers at UCLA detected and characterized an interacting spin system, advancing quantum sensing and spin-based entangled sensing.
Denys Makarov's team at HZDR, together with the Qnami Application lab, demonstrated a method for creating binary states in antiferromagnetic materials.
Researchers led by Benjamin Lawrie used NV relaxometry on the Qnami ProteusQ system to reveal critical behavior in a high-Tc ferromagnetic oxide, providing new insights into phase transitions at the nanoscale.
Sergei Trofimov and Boris Naydenov from the Helmholtz Center in Berlin used Qnami Quantum Foundry diamond plates to achieve nanoscale quantum sensing with 13 nm resolution by combining confocal and atomic-force microscopy techniques.
Paul Stevenson’s research at Northeastern University utilized the Qnami ProteusQ microscope to enhance vector magnetometry, allowing precise measurement of both parallel and perpendicular stray fields in complex materials like bismuth ferrite.