As CMOS technology faces scaling limitations, the search for low-power logic devices has become increasingly urgent. Felix Casanova’s research team has demonstrated a breakthrough approach using Qnami products, achieving voltage-based magnetization switching and reading in nanodevices at room temperature.
Their method leverages exchange coupling between multiferroic BiFeO₃ and ferromagnetic CoFe for writing, and spin-to-charge current conversion between CoFe and Pt for reading. By electrically switching BiFeO₃, the team successfully reversed CoFe magnetization, generating distinct voltage outputs. Scanning NV microscopy linked this effect to polarization states and antiferromagnetic cycloid propagation in BiFeO₃.
This study lays the foundation for magnetoelectric spin-orbit logic, offering a promising path toward energy-efficient, beyond-CMOS computing technologies.