Magnetization Reconstruction Through Vector Magnetic Field Measurements

Image credit: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.024076

Stray magnetic fields provide crucial insights into the electronic and magnetic properties of 2D materials, enabling the reconstruction of current density and magnetization. However, conventional methods often introduce errors and noise due to data truncation and singularities.

This research explores how vector measurements can offer a significant improvement in the reconstructions. The findings show that measuring both in-plane field components (Bx and By) allows for near-perfect current density reconstruction, while a single out-of-plane measurement (Bz) remains the best choice for magnetization mapping. These insights, validated experimentally using nitrogen-vacancy magnetometry, establish a more reliable approach for studying 2D condensed-matter systems at the nanoscale.

Read the full article:Phys. Rev. Applied 14, 024076

See more applications

Current Flow Mapping in Ferroelectric Domain Walls

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

Voltage-based magnetization switching in a magnetoelectric nanodevices

Felix Casanova's team used Qnami products to demonstrate voltage-controlled magnetization switching and reading in nanodevices, paving the way for low-power magnetoelectric spin-orbit logic.

Want to know more?

Talk to us - our Application Scientist is happy to talk with you about what you can do with our Scanning NV Magnetometer ProteusQ.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.