Room-Temperature Skyrmions at Zero Field in Exchange-Biased Ultrathin Films

Magnetic skyrmions are whirling spin textures, which hold great promise to store and process the information at the nanoscale in future memory and logic devices. However, to realize such devices, small-sized skyrmions must be stabilized at ambient conditions without the need of an external magnetic field. Using magnetic heterostructures in which interlayer exchange coupling acts as an effective internal magnetic field the research team demonstrated that magnetic skyrmions with a mean diameter of just 60 nm can be stabilized at room temperature.

Find out more about the work here: https://doi.org/10.1038/s41563-019-0516-z

See more applications

Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

Nanostructured Foundry diamond helps detecting paramagnetic resonance of two electron spins

Using Qnami Foundry-fabricated diamond with NV nanopillars, researchers at UCLA detected and characterized an interacting spin system, advancing quantum sensing and spin-based entangled sensing.

Antiferromagnetic bits measured with Scanning NV magnetometry

Denys Makarov's team at HZDR, together with the Qnami Application lab, demonstrated a method for creating binary states in antiferromagnetic materials.

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.