Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging

Atomically thin van der Walls magnets have been found to be not only an optimal platform for fundamental studies of magnetism in two-dimensional systems, but also promising candidates for next-generation spintronic devices. Bidimensional van der Waals magnets have been extensively investigated at micrometer scales.  However, many of the relevant magnetic properties would be measurable only by probing materials at nanoscale resolutions.  

Professor Wrachtrup’s group and collaborators used Qnami Quantilever MX probes to assess nanoscale magnetic features of atomically thin bilayers of the ferromagnetic insulator CrBr3.  The magnetic domains and their dynamics in CrBr3 have been predicted but never experimentally observed before.  

The team proved the possibility of identifying magnetic domains and study their dynamics in bidimensional van der Waals magnets using scanning NV magnetometry in cryogenic (4K) environment. By using a pulsed measurement scheme, they achieved optimal magnetic field sensitivity and minimize sample heating due to continuous microwave.  

The team was able to measure the stray magnetic field, determine the magnetization and identify the magnetic domains on the CrBr3 bilayer. 

Image source: Nature Communications volume 12, Article number: 1989 (2021) – Published on March 31, 2021 

Researchers studied the evolution of magnetic domains as a function of changing external magnetic field. Domain wall pinning effects were observed and material defect sites identified. 

This work opens the road to nanoscale magnetic characterization of bidimensional van der Waals ferromagnets using cryogenic NV scanning magnetometry with Qnami Quantilever MX probes, allowing a deeper understanding of such intriguing materials 

Read the full article in Nature Communications. 

See more applications

Qnami Foundry supports design of a Diamond micro-chip for quantum microscopy

Led by Mark Ku at the University of Delaware, this work characterizes a high-quality diamond micro-chip from the Qnami Quantum Foundry for advanced, high-resolution NV-based quantum microscopy.

Nanoconfined Microwaves imaged by Rabi Oscillation Mapping

Swastik Kar’s group at Northeastern University used AC magnetometry on the Qnami ProteusQ to show that a permalloy nanowire can be used to concentrate RF fields into sub 300nm regions.

Current Flow Mapping in Ferroelectric Domain Walls

In a recent study on conducting ferroelectric domain walls, researchers used scanning NV magnetometry to directly visualize current flow at the nanoscale. These measurements were performed using the Qnami ProteusQ. The results challenge previous assumptions about current distribution and pave the way for more accurate modeling of next-generation memristive devices.

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.