Designed Spin-Texture to control Magnon Transport in Antiferromagnets

Image credit: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202404639

Spin waves in magnetic materials are emerging as promising candidates for future low-energy computing technologies due to their minimal dissipation and long coherence length. Antiferromagnets, such as BiFeO₃ (BFO), offer additional advantages, including stability against external fields and enhanced spin transport properties.

In a study of Peter Meisenheimer and co-workers, researchers explored long-range spin transport in an epitaxially engineered, electrically tunable magnonic crystal. They discovered a strong anisotropy in spin-wave propagation, influenced by both population imbalances in dispersion and anisotropic structural scattering. These findings, supported by multiscale theory and simulation, pave the way for reconfigurable magnonic devices controlled via electric fields.

The research was conducted using the Qnami ProteusQ, highlighting its capabilities for advancing next-generation spin-based information processing.

 
Read the full article: Adv. Mater. 2024, 36, 2404639

See more applications

Designed Spin-Texture to control Magnon Transport in Antiferromagnets

In this studay the Qnami ProteusQ is used for an investigation of electrically tunable spin transport in BFO.

Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

A tool for NV diamond plate characterization with 10nm resolution

Sergei Trofimov and Boris Naydenov from the Helmholtz Center in Berlin used Qnami Quantum Foundry diamond plates to achieve nanoscale quantum sensing with 13 nm resolution by combining confocal and atomic-force microscopy techniques.

Want to know more?

Talk to us - our Application Scientist is happy to talk with you about what you can do with our Scanning NV Magnetometer ProteusQ.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.