Topological defects in multiferroic antiferromagnetic materials

Topological defects, such as domain walls or skyrmions, are formed when the symmetry of a magnetic material is disrupted. The manipulation of such objects holds promises for high-performance memory devices. 

The direct observation in antiferromagnets at room temperature, however, is very challenging due to extremely weak stray magnetic fields of uncompensated spins. Furthermore, the associated complex spin textures are nanoscale objects, thus requiring excellent spatial resolution.  

Using Scanning NV Magnetometry (SNVM), the team led by Dr. Aurore Finco (Laboratoire Chrales Coulomb – Université de Montpellier and CNRS) observed for the first time topological line defects in multiferroic antiferromagnets at room temperature.

Thanks to the high sensitivity and spatial resolution of Qnami Quantilevers, the team quantitatively imaged the cycloidal antiferromagnetic order at the surface of a bulk bismuth ferrite crystal. They showed the coexistence, within single ferroelectric domains, of antiferromagnetic domains with different directions of the cycloid orientation. At the junctions between the magnetic domains, they observed the complex whirling spin textures demonstrating the presence of topological line defects for the first time in antiferromagnets.

Read the full article in Physical Review Letter.

See more applications

Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

Nanostructured Foundry diamond helps detecting paramagnetic resonance of two electron spins

Using Qnami Foundry-fabricated diamond with NV nanopillars, researchers at UCLA detected and characterized an interacting spin system, advancing quantum sensing and spin-based entangled sensing.

Antiferromagnetic bits measured with Scanning NV magnetometry

Denys Makarov's team at HZDR, together with the Qnami Application lab, demonstrated a method for creating binary states in antiferromagnetic materials.

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.