This technical note explains how spatial resolution is defined in Scanning NV Magnetometry. For a given distance d between the NV center and the scanned surface, the best achievable lateral spatial resolution is 0.86 d.
Denys Makarov's team at HZDR, together with the Qnami Application lab, demonstrated a method for creating binary states in antiferromagnetic materials.
Sergei Trofimov and Boris Naydenov from the Helmholtz Center in Berlin used Qnami Quantum Foundry diamond plates to achieve nanoscale quantum sensing with 13 nm resolution by combining confocal and atomic-force microscopy techniques.
Paul Stevenson’s research at Northeastern University utilized the Qnami ProteusQ microscope to enhance vector magnetometry, allowing precise measurement of both parallel and perpendicular stray fields in complex materials like bismuth ferrite.