Nanoscale Mechanics of Antiferromagnetic Domain Walls

Nanoscale Mechanics of Domain Walls

Domain walls are the interfaces between domains with different magnetic orientation. They carry essential information on the magnetic nanostructure and can have distinct topological properties. Despite wide research on magnetic domains, the study and direct control of individual domain walls remain challenging due to the need for extremely pure materials and very specific experimental protocols.

Using Chromium Oxide (Cr2O3) and Scanning NV Magnetometry, the group led by Prof. Patrick Maletinksy (Quantum Sensing Lab, University of Basel) unveiled for the first time the nanoscale mechanics of antiferromagnetic domain walls.

The team managed to nucleate domain walls in otherwise monodomain Cr2O3 samples by applying external electric and magnetic fields. They used engineered nanoscale mesas as pinning centers for Domain Walls, and laser-dragging techniques to move the domain walls. Thanks to the extremely high spatial resolution and sensitivity of Scanning NV Magnetometry, they quantitatively characterized the domain walls through their weak uncompensated magnetic moments.

These results demonstrate the possibility to switch and read bits of nanoscale dimensions using Scanning NV Magnetometry and laser-dragging. They suggest novel architectures for Domain Wall-based antiferromagnetic memories and new approaches to antiferromagnetic spintronics.

Check out the Nature Physics paper published in March 2021. 

See more applications

A tool for NV diamond plate characterization with 10nm resolution

Sergei Trofimov and Boris Naydenov from the Helmholtz Center in Berlin used Qnami Quantum Foundry diamond plates to achieve nanoscale quantum sensing with 13 nm resolution by combining confocal and atomic-force microscopy techniques.

Optimizing Off-Axis Fields for Vector Magnetometry

Paul Stevenson’s research at Northeastern University utilized the Qnami ProteusQ microscope to enhance vector magnetometry, allowing precise measurement of both parallel and perpendicular stray fields in complex materials like bismuth ferrite.

Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging

Researchers developed diamond probes that enhanced nitrogen-vacancy center signal detection, enabling improved quantum sensing for Qnami Quantilever MX+ probes

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.