Measure electrical currents with Scanning NV Magnetometry

Scanning NV magnetometry is not only suited to measure tiny magnetic fields. It allows to resolve electrical currents (via their magnetic fields) with unprecedented spatial resolution. 

We here apply a current to a 100 nm thick Cr/Au u-shaped wire. The current flows through the nanostructure inducing a local magnetic field which is detected using Scanning NV Magnetometry. We show that the local current density (calculated using the magnetic fields) can be used to identify defects in the nanostructure and geometry-specific current behaviour.

This opens the pathway for using Scanning NV Magnetometry as a tool for failure analysis.  The presented measurements have been performed using Qnami ProteusQ equipped with Vario PQ.

If you want to find out more about these groundbreaking results, download the technical note here.   

See more applications

Exotic antiferromagnetic spin cycloids in bismuth ferrite thin films

/ /
Scanning NV Magnetometry unlocks the characterization of the effects of strain and electrical fields on exotic antiferromagnetic spin textures in multiferroics.

Measure electrical current with Scanning NV Magnetometry

/
Scanning NV Magnetometry reveals nanoscopic weak magnetic inhomogeneities in nanowires never observed before by standard characterization tools.

Long decay length of magnon-polarons in multiferroic/ ferromagnetic heterostructures

/ /
Scanning NV Magnetometry reveals nanoscopic weak magnetic inhomogeneities in nanowires never observed before by standard characterization tools.

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.