FEBID Nanomagnets for Spin Qubit Control

Sketch of the Qnami Scanning NV Microscope ProteusQ when is used to characterize FEBID Cobalt Nanomagnets
Image from ACS Appl. Nano Mater. 2024, 7, 4, 3854-3860

Qubits are the building blocks of quantum computers and hold immense promise for revolutionizing computation. However, their delicate nature renders their control and manipulation a significant challenge.

A popular realization of silicon spin qubits uses nanomagnets to provide a magnetic field gradient. Nevertheless, this poses a significant fabrication challenge, as the gradient needs to be as homogenous and reproducible as possible.

The FEBID nanomagnets

A team led by Prof. Martino Poggio (Poggio Lab, University of Basel) reported on a unique combination of fabrication and characterization techniques to address this challenge. They fabricated Cobalt nanomagnets by focused electron beam deposition (FEBID).

FEBID is a ground-breaking, resist-free nanofabrication method. Their findings reveal that FEBID nanomagnets possess unique properties that, in combination with the ability of FEBID to produce 3D magnetic geometries, enable unprecedented optimization possibilities to fabricate nanomagnets for spin qubit control.

And their quantum characterization

Crucial for this work was the ability to accurately characterize the nanomagnets. By using the Qnami ProteusQ, the lead author Liza Zaper (PhD Student in Poggio Lab and Application Scientist at Qnami), was able to investigate their magnetic properties under large in-plane bias fields of up to 200 mT.

Using the Qnami Quantum Microscope, Zaper could not only measure large magnetic field gradients but also reveal small distortions of this gradient – both instrumental in this work, published in ACS Applied Nano Materials.

See more applications

Exotic antiferromagnetic spin cycloids in bismuth ferrite thin films

Scanning NV Magnetometry unlocks the characterization of the effects of strain and electrical fields on exotic antiferromagnetic spin textures in multiferroics.

Scanning NV magnetometry reveals magnetic textures in 2D material CrBr3 in cryogenic environment

/
Applying scanning NV magnetometry to cryogenic temperatures allowed Professor Wrachtrup and his collaborators to reveal magnetic domains and study their dynamics in atomically thin van der Waals magnets.

Want to know more?

Talk to us - our Application Scientist is happy to talk with you about what you can do with our Scanning NV Magnetometer ProteusQ.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.