Assessing the quality of magnetic memory devices

Image Credit: https://www.nature.com/articles/s44306-024-00016-5

Advancements in storage density and energy efficiency over the last decades have led to the miniaturization of magnetic memories, where state-of-the art bit sizes today lie deep in the sub-100 nm scale. However, probing the magnetic homogeneity of these bits is extremely challenging as it requires sufficient sensitivity and spatial resolution.

A Frutiful Collaboration

In a collaboration with imec, the Qnami Applab team approached this question by characterizing state-of-the art Spin-Transfer Torque Magnetoresistive Random-Access Memory (STT-MRAM) devices with ProteusQ. In the Qnami/imec work, the stray field of individual, encapsulated MRAM bits was measured. With this information, we characterized the switching statistics of 400 bits by using the MagnetoPQ. This allowed to link the switching behavior to the observed magnetic roughness of the devices. The characterization was done on encapsulated devices, sans electrical connectivity, situating our approach early in the process line – a stage where alternative nanoscale metology tools are currently absent. As a leading next-generation memory technology that is already in production, STT-MRAM perfectly exemplifies the impact of magnetic roughness measurements for emerging nanoelectronic technologies.

The work by the application team at Qnami together with imec has been recently published: A quantum sensing metrology for magnetic memories | npj Spintronics (nature.com), npj Spintronics volume 2, Article number: 14 (2024),

See more applications

A tool for NV diamond plate characterization with 10nm resolution

Sergei Trofimov and Boris Naydenov from the Helmholtz Center in Berlin used Qnami Quantum Foundry diamond plates to achieve nanoscale quantum sensing with 13 nm resolution by combining confocal and atomic-force microscopy techniques.

Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

Morphogenesis of spin cycloids

Researchers led by Ramamoorthy Ramesh used the Qnami ProteusQ™ quantum microscope to uncover how complex labyrinthine spin cycloids and their topological defects emerge in noncollinear antiferromagnets.

Want to know more?

Talk to us - our Application Scientist is happy to talk with you about what you can do with our Scanning NV Magnetometer ProteusQ.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.