Multiferroic antiferromagnet

Strain dependent magnetic textures on striped ferroelectric domains

Antiferromagnetic thin films are currently generating considerable excitement for low dissipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form the backbone of functional devices, they are virtually unknown at the submicron scale. Here the team led by V. Garcia report the direct observation of a wide variety of antiferromagnetic spin textures in multiferroic BiFeO3 thin films that can be tuned by strain and manipulated by electric fields through room-temperature magnetoelectric coupling. 

Find out more about the work here: https://doi.org/10.1038/s41563-019-0516-z

See more applications

Unconventional flexomagnetism in chromium oxide thin films

/ /
Applying inhomogeneous strain to chromium oxide thin films induces a strong vertical gradient of the Neel temperature inferred through scanning NV magnetometry measurements.

Nanoscale mechanics of domain walls

/ /
Scanning NV Magnetometry unveiled for the first time the nanoscale mechanics of antiferromagnetic domain walls opening new avenues for antiferromagnetic spintronics.

Topological defects in multiferroic antiferromagnets

/ /
Qnami Quantilevers enabled the observation of topological defects in multiferroic antiferromagnets at rooom temperature for the first time.

Want to know more?

Talk to us - we're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.