Imaging antiferromagnetic spin cycloids in bismuth ferrite (BiFeO3)

Antiferromagnets are magnetically ordered materials, where the directions of the atomic magnetic moments alternate, resulting in net macroscopic magnetization which is nominally zero. Beyond their fundamental interest, antiferromagnets present attractive features for future spintronic applications.

It is largely overlooked that these seemingly exotic materials are in fact widespread – a 90% majority of known magnets present such antiferromagnetic order. Well-studied examples include many metal-oxides, manganese-based alloys and rock salts as well as halides. Yet, the real-space observation of antiferromagnetic order remains a challenging task, in particular at the nanoscale.

It was recently realized that highsensitivity magnetic imaging of the stray fields (also known as demagnetizing fields) outside the material offers a powerful avenue to address nanoscale spin textures in antiferromagnets.

In this Application Note, we show how Qnami ProteusQ™ can be used to image antiferromagnetic spin textures with state-of-the-art accuracy. We present two modes of operation allowing to rapidly converge towards quantitative understanding of the magnetic textures at the surface of an antiferromagnet. We use BiFeO3 as a prototype example, where we reveal spin cycloidal antiferromagnetic order with a performance that compares favorably with the recent literature.

See more applications

Scanning NV magnetometry reveals magnetic textures in 2D material CrBr3 in cryogenic environment

/ /
Applying scanning NV magnetometry to cryogenic temperatures allowed Professor Wrachtrup and his collaborators to reveal magnetic domains and study their dynamics in atomically thin van der Waals magnets.

Characterization of room-temperature in-plane magnetization in thin flakes of CrTe2 with a single spin magnetometer

/ /
Using Qnami QuantileverMX probes, the team led by Vincent Jacques identifies the only “van der Waals” material known to date where magnetic order occurs in a few atomic layers even at room temperature 

Spatial Resolution in Scanning NV Magnetometry – Technical Note

/ / / /
This technical note explains how spatial resolution is defined in Scanning NV Magnetometry. For a given distance d between the NV center and the scanned surface, the best achievable lateral spatial resolution is 0.86 d.

Do you want to know more?

Get in touch with us. We're happy to answer your questions.
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings


  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.