Quantum sensing applications

Measured with Qnami Quantilevers

Discover the research enabled by Qnami Quantilevers, highlighting their contribution to advancements in magnetic imaging, quantum sensing, and material characterization. Explore how these probes are facilitating breakthroughs and dive into the publications that showcase the impact of Qnami Quantilevers on cutting-edge research.

Nanoconfined Microwaves imaged by Rabi Oscillation Mapping

Swastik Kar’s group at Northeastern University used AC magnetometry on the Qnami ProteusQ to show that a permalloy nanowire can be used to concentrate RF fields into sub 300nm regions.

Current Flow Mapping in Ferroelectric Domain Walls

In a recent study on conducting ferroelectric domain walls, researchers used scanning NV magnetometry to directly visualize current flow at the nanoscale. These measurements were performed using the Qnami ProteusQ. The results challenge previous assumptions about current distribution […]

Morphogenesis of spin cycloids

Researchers led by Ramamoorthy Ramesh used the Qnami ProteusQ™ quantum microscope to uncover how complex labyrinthine spin cycloids and their topological defects emerge in noncollinear antiferromagnets.

Antiferromagnetic bits measured with Scanning NV magnetometry

Denys Makarov's team at HZDR, together with the Qnami Application lab, demonstrated a method for creating binary states in antiferromagnetic materials.

Unveiling Critical Behavior in High-Tc Ferromagnets with NV Magnetometry

Researchers led by Benjamin Lawrie used NV relaxometry on the Qnami ProteusQ system to reveal critical behavior in a high-Tc ferromagnetic oxide, providing new insights into phase transitions at the nanoscale.

Optimizing Off-Axis Fields for Vector Magnetometry

Paul Stevenson’s research at Northeastern University utilized the Qnami ProteusQ microscope to enhance vector magnetometry, allowing precise measurement of both parallel and perpendicular stray fields in complex materials like bismuth ferrite.

Designed Spin-Texture to control Magnon Transport in Antiferromagnets

In this studay the Qnami ProteusQ is used for an investigation of electrically tunable spin transport in BFO.

Probing Geometry-Induced Magnetic Defects in Modulated Nanowires with NV Centers in Diamond

Researchers led by Jacopo Forneris have demonstrated the fabrication of germanium-vacancy (GeV) color center arrays in diamond nanopillars, showcasing the Quantum Foundry’s expertise in nanopatterning for quantum photonics.

Assessing the quality of magnetic memory devices

Magnetic random access memory devices are investigated using Scanning NV magnetometry

Configuring topological states by electric fields

Vincent Garcia’s team, using ProteusQ, demonstrated electrically controlled topological states in BiFeO₃, advancing reconfigurable antiferromagnetic spintronics.

BFO as a platform for ultraefficient spintronics

Magnetoelectric coupling in BFO is seen as never before with ProteusQ by combining Piezo Force and Scanning NV Microscopy.

All-oxide Magnetoelectric logic

Ramamoorthy Ramesh’s team, using Scanning NV data from Proteus Q, demonstrated ferroelectric control of magnons in BiFeO₃, enabling energy-efficient spin transport for low-dissipation nanoelectronics.

Voltage-based magnetization switching in a magnetoelectric nanodevices

Felix Casanova's team used Qnami products to demonstrate voltage-controlled magnetization switching and reading in nanodevices, paving the way for low-power magnetoelectric spin-orbit logic.

FEBID Nanomagnets for Spin Qubit Control

Combining FEBID and Scanning NV Microscopy, researchers fabricated and characterized Cobalt nanomagnets for spin Qubit control.

Multiferroicity of Single-Spin Cycloid state in BFO thin films

ProteusQ combined with AI-based tools allows researchers to unveil for the first time puzzling magnon dynamics through magnetic domain walls.

Novel chiral quantum light source

Scanning NV Magnetometry proves how a novel combination of van der Waals materials is the easy and effective chiral quantum light source of the future.

Fabrication of all diamond scanning probes for nanoscale magnetometry

In this seminal work, Patrick Maletinsky and his group review the fabrication of Scanning NV tips. It is the basis for the Qnami Quantilever

AI Reconstruction of Magnetic Field Sources

Artificial intelligence improves magnetization map reconstruction from NV stray-field images.

Topological defects in multiferroic antiferromagnetic materials

Qnami Quantilevers enabled the observation of topological defects in multiferroic antiferromagnets at rooom temperature for the first time.

Exotic antiferromagnetic spin cycloids in bismuth ferrite thin films

Scanning NV Magnetometry unlocks the characterization of the effects of strain and electrical fields on exotic antiferromagnetic spin textures in multiferroics.
1 2
We are using cookies and analytics tools to give you the best digital experience.
AcceptPrivacy Settings

GDPR

  • Cookie Consent

Cookie Consent

We are using cookies and analytics tools to give you the best digital experience.  Find more information and details about how to switch them off in our Terms of Website Use and Privacy Policy.